Economic Order Quantity (EOQ) Calculation¶
Illustration 2.1¶
Calculate the economic order quantity for material M. The following details are furnished:
- Annual usage = 90,000 units
- Buying cost per order = Rs 10
- Cost of carrying inventory = 10% of cost
- Cost per unit = Rs 50
Solution:
The formula for EOQ is:
\[
EOQ = \sqrt{\frac{2AB}{CS}}
\]
Where:
- \( A \) = Annual consumption
- \( B \) = Buying Cost
- \( C \) = Cost per unit
- \( S \) = Storage/Carrying Cost
Calculating EOQ:
\[
EOQ = \sqrt{\frac{2 \times 90,000 \times 10}{50 \times 10\%}}
\]
\[
EOQ = \sqrt{\frac{2 \times 90,000 \times 10}{5}}
\]
\[
EOQ = \sqrt{360,000}
\]
\[
EOQ = 600 \text{ units}
\]
Illustration 2.13¶
Given,
- Cost of placing order or Buying Cost (B) = Rs 100
- Purchase price of raw material (C) = Rs 10
- Re-order period = 4-8 weeks
- Consumption of Raw materials = 100-450 Kg per week
- Annual consumption (A) = 275 x 52 = 14,300 Kg
- Avg consumption of RM = 275 Kg
- Carrying cost (S) = 20% p.a.
Calculate:
i) Re-order quantity or EOQ
\[
\text{EOQ} = \sqrt{\frac{2AB}{CS}}
\]
\[
\text{EOQ} = \sqrt{\frac{2 \times 14,300 \times 100}{10 \times 20\%}}
\]
\[
\text{EOQ} = \sqrt{\frac{2 \times 14,300 \times 100}{2}}
\]
\[
\text{EOQ} = \sqrt{1,430,000}
\]
\[
\text{EOQ} = 1195.82 \text{ or } 1196 \text{ Kgs (approx.)}
\]
ii) Re-order Level
\[
\text{Re-order Level} = \text{Maximum consumption} \times \text{Maximum re-order period}
\]
\[
\text{Re-order Level} = 450 \times 8
\]
\[
\text{Re-order Level} = 3600 \text{ Kgs}
\]
Illustration 2.3¶
Given,
- Monthly consumption = 2,500 units
- Annual consumption (A) = 2,500 x 12 = 30,000 units
-
Cost of placing order or Buying cost (B) = Rs 150
-
Cost per unit (C) = Rs 20
- Re-order period = 4-8 weeks
- Minimum consumption of RM = 100 units
- Avg consumption of RM = 275 units
- Carrying cost (S) = 20% p.a.
Calculate:
i) Re-order Quantity or EOQ
\[
\text{EOQ} = \sqrt{\frac{2AB}{CS}}
\]
\[
\text{EOQ} = \sqrt{\frac{2 \times 30,000 \times 150}{20 \times 20\%}}
\]
\[
\text{EOQ} = \sqrt{\frac{2 \times 30,000 \times 150}{4}}
\]
\[
\text{EOQ} = \sqrt{2,250,000}
\]
\[
\text{EOQ} = 1500 \text{ units}
\]
ii) Re-order level
\[
\text{Re-order Level} = \text{Maximum consumption} \times \text{Maximum level}
\]
Calculate the average consumption to find the maximum level:
\[
\text{Avg Consumption} = \frac{\text{Minimum level} + \text{Maximum level}}{2}
\]
\[
275 = 100 + \frac{\text{Maximum level}}{2}
\]
\[
550 - 100 = \text{Maximum level}
\]
\[
\text{Maximum level} = 450 \text{ Kgs}
\]
Now calculate the Re-order Level:
\[
\text{Re-order Level} = 450 \times 8
\]
\[
\text{Re-order Level} = 3600 \text{ Kgs}
\]
Illustration 2.5¶
Given,
- Monthly consumption = 1500 units
- Annual consumption (A) = 1500 x 12 = 18,000 units
- Cost per order or Buying cost (B) = Rs 150
- Cost per unit (C) = Rs 27
- Carrying cost (S) = 20%
Calculate EOQ:
\[
\text{EOQ} = \sqrt{\frac{2AB}{CS}}
\]
\[
\text{EOQ} = \sqrt{\frac{2 \times 18,000 \times 150}{27 \times 20\%}}
\]
$$ \text{EOQ} = \sqrt{\frac{2 \times 18
,000 \times 150}{5.4}} $$
\[
\text{EOQ} = \sqrt{1,000,000}
\]
\[
\text{EOQ} = 1000 \text{ units}
\]
Calculate the number of orders per year:
\[
\text{Number of Orders} = \frac{\text{Annual consumption}}{\text{EOQ}}
\]
\[
\text{Number of Orders} = \frac{18,000}{1000}
\]
\[
\text{Number of Orders} = 18
\]
Hive Chat
Hi, I'm Hive Chat, an AI assistant created by CollegeHive.
How can I help you today?
How can I help you today?
🎶